New Hampshire Volunteer Lake Assessment Program ## 2003 Biennial Report for Nubanusit Lake Nelson NHDES Water Division Watershed Management Bureau 29 Hazen Drive Concord, NH 03301 ## OBSERVATIONS & RECOMMENDATIONS After reviewing data collected from **NUBANUSIT LAKE**, **NELSON**, the program coordinators have made the following observations and recommendations: As part of the state's lake survey program, DES biologists performed a comprehensive lake survey on **NUBANUSIT LAKE** this summer. Publicly-owned recreational lakes/ponds in the state are surveyed approximately every ten to fifteen years. In addition to the tests normally carried out by VLAP, biologists tested for certain indicator metals and nitrogen, created a map of the lake/pond bottom contours (referred to as a bathymetric map), and mapped the abundance and distribution of the aquatic plants along the shoreline. DES biologists will also sample the lake/pond once during the Winter of 2003-2004. A final report should be available in 2005 and a copy will be available at any state library. #### FIGURE INTERPRETATION Figure 1 and Table 1: The graphs in Figure 1 (Appendix A) show the historical and current year chlorophyll-a concentration in the water column. Table 1 (Appendix B) lists the maximum, minimum, and mean concentration for each sampling season that the lake/pond has been monitored through the program. Chlorophyll-a, a pigment naturally found in plants, is an indicator of the algal abundance. Because algae are usually microscopic plants that contain chlorophyll-a, and are naturally found in lake ecosystems, the chlorophyll-a concentration measured in the water gives an estimation of the algal concentration or lake productivity. The mean (average) summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 7.02 mg/m³. The current year data (the top graph) show that the chlorophyll-a concentration *increased slightly* from July to August. The chlorophyll-a concentration on both sampling events was *much less than* the state mean. Overall, the statistical analysis of the historical data (the bottom graph) shows that the mean annual chlorophyll-a concentration has **not significantly changed** (either *increased* or *decreased*) since monitoring began in **1989**. Specifically, the chlorophyll-a concentration has remained **relatively stable**, **ranging between 1** and 3 mg/L and has been much less than the state median. (Note: Please refer to Appendix E for the detailed statistical analysis explanation and data print out.) While algae are naturally present in all lakes/ponds, an excessive or increasing amount of any type is not welcomed. In freshwater lakes/ponds, phosphorus is the nutrient that algae depend upon for growth. Algal concentrations may increase with an increase in nonpoint sources of phosphorus loading from the watershed, or inlake sources of phosphorus loading (such as phosphorus releases from the sediments). Therefore, it is extremely important for volunteer monitors to continually educate residents about how activities within the watershed can affect phosphorus loading and lake/pond quality. Figure 2 and Table 3: The graphs in Figure 2 (Appendix A) show historical and current year data for lake/pond transparency. Table 3 (Appendix B) lists the maximum, minimum and mean transparency data for each sampling season that the lake/pond has been monitored through the program. Volunteer monitors use the Secchi-disk, a 20 cm disk with alternating black and white quadrants, to measure water clarity (how far a person can see into the water). Transparency, a measure of water clarity, can be affected by the amount of algae and sediment from erosion, as well as the natural colors of the water. The mean (average) summer transparency for New Hampshire's lakes and ponds is 3.7 meters. The current year data (the top graph) show that the in-lake transparency **decreased slightly** from July to August. The transparency on both sampling events was **much greater than** the state mean. Overall, the statistical analysis of the historical data show that the mean annual in-lake transparency has **significantly increased** since monitoring began. Specifically, the transparency has **increased** (meaning **improved**) on average by **approximately 2.6 percent** per sampling season during the sampling period **1991** to **2003**. (Note: Please refer to Appendix E for the statistical analysis explanation and data print out.) Typically, high intensity rainfall causes erosion of sediments into lakes/ponds and streams, thus decreasing clarity. Efforts should continually be made to stabilize stream banks, lake/pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the lake/pond. Guides to Best Management Practices designed to reduce, and possibly even eliminate, nonpoint source pollutants, such as sediment loading, are available from DES upon request. Figure 3 and Table 8: The graphs in Figure 3 (Appendix A) show the amounts of phosphorus in the epilimnion (the upper layer) and the hypolimnion (the lower layer); the inset graphs show current year data. Table 8 (Appendix B) lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the lake/pond has joined the program. Phosphorus is the limiting nutrient for plant and algae growth in New Hampshire's freshwater lakes and ponds. Too much phosphorus in a lake/pond can lead to increases in plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 11 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L. The current year data for the epilimnion (the top inset graph) and the hypolimnion (the lower inset graph) show that the phosphorus concentration **remained stable** from July to August. The phosphorus concentration on both sampling events was **much less than** the state median. Overall, the statistical analysis of the historical data show that the phosphorus concentration in the epilimnion (upper layer) and the hypolimnion (lower layer) has **not significantly changed** (either continually increased or decreased) since monitoring began in **1991**. Specifically, the phosphorus concentration in the epilimnion and hypolimnion has remained **relatively stable** and has been **less than** the state median. (Note: Please refer to Appendix E for the statistical analysis explanation and data print out.) One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about its sources and how excessive amounts can adversely impact the ecology and value of lakes and ponds. Phosphorus sources within a lake or pond's watershed typically include septic systems, animal waste, lawn fertilizer, road and construction erosion, and natural wetlands. #### TABLE INTERPRETATION #### > Table 2: Phytoplankton Table 2 (Appendix B) lists the current and historic phytoplankton species observed in the lake/pond. The dominant phytoplankton species observed this year were *Dinobryon*, *Mallomonas*, and *Synura* (which are all golden-brown algae). Phytoplankton populations undergo a natural succession during the growing season (Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession). Diatoms and golden-brown algae are typical in New Hampshire's less productive lakes and ponds. #### > Table 4: pH Table 4 (Appendix B) presents the in-lake and tributary current year and historical pH data. pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 5.5 severely limits the growth and reproduction of fish. A pH between 6.5 and 7.0 is ideal for fish. The mean pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.5**, which indicates that the surface waters in state are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report. The mean pH at the deep spot this season ranged from **5.85** in the hypolimnion to **5.98** in the epilimnion, which means that the water is **slightly acidic.** Due to the presence of granite bedrock in the state and the deposition of acid rain, there is not much that can be done to effectively increase lake/pond pH. #### > Table 5: Acid Neutralizing Capacity Table 5 (Appendix B) presents the current year and historic epilimnetic ANC for each year the lake/pond has been monitored through VLAP. Buffering capacity or ANC describes the ability of a solution to resist changes in pH by neutralizing the acidic input to the lake. The mean ANC value for New Hampshire's lakes and ponds is **6.7 mg/L**, which indicates that many lakes and ponds in the state are "highly sensitive" to acidic inputs. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report. The Acid Neutralizing Capacity (ANC) of the epilimnion (the upper layer) continued to be **very low** this season (annual mean of 1.00 mg/L). The ANC annual mean has ranged from 2.15 to 0.38 mg/L since 1981. This means that the lake is **extremely sensitive** to acidic inputs (such as acid precipitation). #### > Table 6: Conductivity Table 6 (Appendix B) presents the current and historic conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current. The mean conductivity value for New Hampshire's lakes and ponds is **62.1 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report. The conductivity in the lake/pond is relatively *low* (approximately 20 uMhos/cm) which is *much less than* the state mean. Typically conductivity levels greater than 100 uMhos/cm indicate the influence of human activities on surface water quality. These activities include septic system leachate, agricultural runoff, iron deposits, and road runoff (which contains road salt during the spring snow melt). The low conductivity level in the *lake* is an indication of the low amount of pollutants in the watershed. We hope this trend continues! #### > Table 8: Total Phosphorus Table 8 (Appendix B) presents the current year and historic total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The total phosphorus concentration was **very low** in each of the Inlets tested this season. Specifically, the total phosphorus concentration at each of the Inlet sampling locations was **7 ug/l or less.** #### Table 9 and Table 10: Dissolved Oxygen and Temperature Data Table 9 (Appendix B) shows the dissolved oxygen/temperature profile(s) for the 2003 sampling season. Table 10 (Appendix B) shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of dissolved oxygen is vital to fish and amphibians in the water column and also to bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The dissolved oxygen concentration was **high** at all depths sampled at the deep spot of the lake/pond. As stratified lakes/ponds age, oxygen becomes **depleted** in the hypolimnion (lower layer) by the process of decomposition. Specifically, the loss of oxygen in the hypolimnion results primarily from the process of biological oxidation of organic matter (i.e.; biological organisms using oxygen to break down organic matter), both in the water column and particularly at the bottom of the lake/pond where the water meets the sediment. The **high** oxygen level in the hypolimnion is a sign of the lake's/pond's overall good health. The dissolved oxygen concentration was *greater than* 100 percent saturation from 10 meters through 17 meters at the deep spot on the August 5 sampling event. Wave action from wind can also dissolve atmospheric oxygen into the upper layers of the water column. Layers of algae can also raise the dissolved oxygen in the water column, since oxygen is a by-product of photosynthesis. Considering that the depth of the photic zone (depth to which sunlight can penetrate into the water column) was approximately 12.5 meters on this date (as shown by the Secchi-disk transparency), and that the metalimnion (the layer of rapid decrease in water temperature and increase in density – a place where algae are often found) was located between approximately 9 and 17 meters, we suspect that an abundance of algae caused the oxygen super saturation. #### > Table 11: Turbidity Table 11 (Appendix B) lists the current year and historic data for inlake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation. #### > Table 12: Bacteria (E.coli) Table 12 lists the current year data for bacteria (*E.coli*) testing. *E. coli* is a normal bacterium found in the large intestine of humans and other warm-blooded animals. *E.coli* is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage **MAY** be present. If sewage is present in the water, potentially harmful disease-causing organisms may also be present. Please consult the "Other Monitoring Parameters" section of the report for the current state standards for *E. coli* in surface waters. The *E.coli* concentration was **low** at Hancock Landing on the July and August sampling events. If you are concerned about bacteria levels at this location, you may want to repeat this test next season on a weekend during heavy lake use or after a rain event. Since *E.coli* die quickly in cool pond waters, testing is most accurate and most representative of the health risk to bathers when the source (humans, animals, or waterfowl) is present. #### **DATA QUALITY ASSURANCE AND CONTROL** #### **Annual Assessment Audit:** During the annual visit to your lake/pond, the biologist conducted a "Sampling Procedures Assessment Audit" for your monitoring group. Specifically, the biologist observed the performance of your monitoring group while sampling and filled out an assessment audit sheet to document the ability of the volunteer monitors to follow the proper field sampling procedures (as outlined in the VLAP Monitor's Field Manual). This assessment is used to identify any aspects of sample collection in which volunteer monitors are not following the proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions. Overall, your monitoring group did an **excellent** job collecting samples on the annual biologist visit this season! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training. Keep up the good work! #### Sample Receipt Checklist: Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if the volunteer monitors followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, future reoccurrences of improper sampling techniques. Overall, the sample receipt checklist showed that your monitoring group did an *excellent* job when collecting samples and submitting them to the laboratory this season! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the laboratory staff to contact your group with questions, and no samples were rejected for analysis. #### **NOTES** Monitor's Note (7/2/03): Slow tributary flow. Saw 3 resident Bald Eagles. **Biologist's Note (7/2/03):** Excellent water quality! #### **USEFUL RESOURCES** Acid Deposition Impacting New Hampshire's Ecosystems, ARD-32, NHDES Fact Sheet, (603) 271-3505, or www.des.state.nh.us/factsheets/ard/ard-32.htm. Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, NHDES-WD 97-8, NHDES Booklet, (603) 271-3503. Camp Road Maintenance Manual: A Guide for Landowners. KennebecSoil and Water Conservation District, 1992, (207) 287-3901. Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, NHDES Fact Sheet, (603) 271-3505, or www.des.state.nh.us/factsheets/wmb/wmb-10.htm. Erosion Control for Construction in the Protected Shoreland Buffer Zone, WD-SP-1, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/sp/sp-1.htm Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, WD-BB-9, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/bb/bb-9.htm. Road Salt and Water Quality, WD-WMB-4, NHDES Fact Sheet, (603) 271-3503 or www.des.state.nh.us/factsheets/wmb/wmb-4.htm. ## APPENDIX A **GRAPHS** ## Nubanusit Lake, Nelson Figure 1. Monthly and Historical Chlorophyll-a Results ## Nubanusit Lake, Nelson ### Nubanusit Lake, Nelson